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Level detection in ion channel records via idealization
by statistical filtering and likelihood optimization

VASSILI P. PASTUSHENKO  HANSGEORG SCHINDLER

Institute for Bioph�sics, Johannes Kepler Uni�ersit� of Lin�, Altenbergerstr. 69, A-4040 Lin�-Auhof, Austria

SUMMARY

A parameter-free method is presented for the level detection in ion channel records via recovery of step
wise current changes. No assumptions about ion channel mechanism are made. The primary detection
of the transitions is made by statistical filtering the data using the Student’s t-test. The event currents are
calculated as the average value of the current between two adjacent transitions. An optimal ideal trace
is found by maximization of a likelihood function. The distribution of event currents recovered from the
raw data is then analysed, again by using the Student’s t-test, for their grouping into separate statistical
ensembles, defining current levels. The method is subjected to rigorous test using simulated data, and is
compared with several other methods. It produces the levels of channel current, their noise amplitudes
and distributions of dwell times, the desired information for constructing the channel mechanism.

1. INTRODUCTION

Statistical analysis of ion channel records has been
described in Colquhoun & Hawkes (1983) and
Colquhoun & Sigworth (1983) (both papers are now
updated in the second edition of the book), Jackson
(1992), Magleby (1992) and French & Wonderlin
(1992). Several new approaches have been published
recently (Kirlin & Moghaddamjoo 1986; Moghad-
damjoo 1988, 1989, 1991; Patlak 1988; Schultze &
Draber 1993; �in et al. 1996; VanDongen 1996). For
a discussion of acquisition and analysis of ion-channel
data see French & Wonderlin (1992) and Heinemann
(1995). The final aim of such an analysis is a proposal
on the mechanisms underlying the channel activity in
the form of kinetic schemes. Some methods assume a
certain hidden Markov model (HMM) for the mech-
anism (Rabiner 1989). This enables the parameters of
HMM to be directly fitted to experimental data
(Dempster et al. 1977; Horn 1987; Korn & Horn 1988;
Chung et al. 1990; Chung & Kennedy 1991; Heine-
mann & Sigworth 1991; Terrien 1992; Fredkin &
Rice 1992a ; Becker et al. 1993). However, even if the
Markov assumption is not unreasonable (for testing the
Markov property, see Petracchi et al. 1991), it is rather
difficult to select or identify the most appropriate type
of HMM. In particular, even the number of levels may
be unclear. The popularity of HMM as the main
model for ion channel may have two reasons : (i) the
properties of Markov systems are well studied and
(ii) accepting a certain model represented by several
parameters simplifies the model identification (Hafner
1989) which is then reduced to a parameter estimation
(cf. Horn & Lange 1983; Magleby & Weiss 1990a, b).

The main information for constructing the channel
mechanism is contained in the event currents and
distributions of dwell times. Therefore, the first step in
the analysis is the detection of transitions in the

experimental record, sometimes referred to as
‘detecting clusters ’ (Kirlin & Moghaddamjoo 1986),
‘ segmentation’ (Moghaddamjoo 1989), ‘restoration’
problem (Fredkin & Rice 1992b), ‘estimating the
state sequence’ (Terrien 1992), or ‘record idealization’
(Magleby 1992). The purpose of the idealization is to
produce a possibly complete list of dWells for consecutive
e�ents including all data points. Recently, an approach
for model identification directly from the idealized
trace was suggested (�in et al. 1996).

One standard method for record idealization, the
50% amplitude threshold method (Colquhoun &
Sigworth 1983), frequently requires deep low-pass
filtering. This method uses preliminary knowledge of
levels, which allows avoidance of some natural errors
in the case of unknown levels. At the same time, if the
initial information about levels is incorrect, this method
gives less chances of finding real levels. In addition, the
statistical filtering described here avoids transition
shifts caused by low-pass filtering.

The idealization is based on testing the hypothesis of
‘a real transition within a testing window’ with
asymmetric Student’s t-test (Heinhold & Gaede 1968;
Oppenheim & Schaefer 1975) and on maximization of
a likelihood function. It has no separate limitations on
SNR and distance between levels, as in VanDongen
(1996). For preliminary reports see Pastushenko &
Schindler (1992, 1993, 1994).

2. STATEMENT OF THE PROBLEM

A record of an ion-channel current, r, in digitized
form, represents a time series, r¯² r

"
, r

#
,… , r

N
´, where

N is the total number of data points. The time is
measured in units of a sampling interval t

s
. Thus, each

dwell is equal to the amount of data points in a
corresponding event. As usual (Jackson 1992), we
make the following assumptions.
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1. The record is a superposition of mutually
independent background noise (noise) and step wise
changing current (signal) :

r¯ signal­noise. (1)

Signal and noise are two sets of numbers of the same
length N.

2. The signal assumes one of K (unknown) values,
corresponding to different current levels (Box et al.
1994) of a single channel or several ion channels ; K is
unknown. For examples of sub-onductance states see
Fox (1987).

3. Transitions between levels occur at random
instants ; the distribution of dwells is unknown.

4. The noise is a realization of a white noise process
(Box et al. 1994), i.e. it represents N independent
samples of a normally distributed random variable
with zero mean and variance σ# which is not known.

To consider the noise in adjacent points as in-
dependent, the sampling interval t

s
should be suffici-

ently large. A practically acceptable rule is t
s
¯

1}(2πf
c
), where f

c
is the cut-off or – 3 dB frequency

(Sigworth 1983). The factor 2π corresponds to an
analog RC filter, in which case t

s
coincides with the

characteristic time of the correlation function of
filtered white noise. Close recipes for the sampling rate
were given in Sachs (1983), Sigworth (1983) and
Colquhoun (1987).

3. CONSTRUCTION OF A STUDENT’S

T FILTER

We first introduce the Student’s t-test in the context
of finding transitions within some window by testing a
null hypothesis. It is then used for constructing a
two-step algorithm for finding transitions in the record
(T filter).

(a) Student’s t-test as a transition finder

Consider an arbitrary window of W data points from
the record (W& 3), starting from i

!
& 1 and numbered

as r
i
, where i¯ i

!
, i

!
­1,… , i

!
­W®1. For convenience,

we renumber these points as r
j
, where j¯ 1, 2,… , W. It

is assumed that not more than one transition may
occur within the window. Let the transition be
expected immediately after the point j¯ l, with W"
l& 1. The test is made using the average values of the
current to the left and to the right of the suspected
transition, A

l
and A

r
respectively

A
l
¯

1

l
3
l

j="

r
j
; A

r
¯

1

W®l
3
w

j= l+"

r
j
. (2)

Random quantities A
l
, A

r
and A

r
®A

l
have expected

variances V
l
, V

r
and V

l
­V

r
respectively:

V
l
¯

σ#

l
; V

r
¯

σ#

W®l
; V

l
­V

r
¯

σ#

l(1®l}W)
. (3)

If the null hypothesis , H
!

(‘ the transition is false, i.e.
generated by noise ’) is true, the quantity G, defined as

G¯ (A
r
®A

l
)o(l(1®l}W)}σ , (4)

will be normally distributed with zero average and
variance 1. This test function is known as the ‘Gaussian

test ’ (Heinhold & Gaede 1968). Usually the value of σ#

is not known in advance. The Student’s t-test over-
comes this difficulty, replacing σ# by a local estimate
of the noise variance, σ#

lr
, constructed from the σ#

estimates on both sides of the expected transition, σ#
l

and σ#
r

σ#
lr

¯²(l®1)σ#
l
­(W®l®1)σ#

r
´ }n, (5)

n¯W®2. (6)

Here n is the degree of freedom for σ#
lr

estimation. The
estimates for the noise variances are

σ#
l
¯

1

l®1­ε
3
l

j="

(r
j
®A

l
)# ;

σ#
r
¯

1

W®l®1­ε
3
w

j= l+"

(r
j
®A

r
)#. (7)

Here ε" 0 is a negligibly small number, ε!!! 1, really
meaningful in case l¯ 1 or l¯W®1. If H

!
is true, the

quantity nσ#
lr
}σ# obeys the χ# distribution with n

degrees of freedom, and is independent of G. Therefore,
for true H

!
the quantity T defined as

T¯Gσ}σ
lr
, (8)

obeys the Student’s t-distribution with n& 1 degrees of
freedom. To find the most likely transition, T values
are calculated for all possible values of l. At a particular
l value, say l

!
, the value of T # will be maximum.

Therefore, l
!

will be the most likely position of a
possible transition (the transition to be tested is
between l

!
and l

!
­1). One can show that the Student’s

t-test (like Gaussian test) minimizes the noise σ#
lr

for
l¯ l

!
. In other words, the candidates for transitions

suggested by these tests are found in the sense of
maximum likelihood. To reject H

!
, one has to compare

rT(l
!
)rwith a threshold value of the test, X

n
(P), which

depends on a certain transition reliability P, satisfying
0%P! 1, and on n¯W®2. The criterion for accept-
ing the most likely transition as a real one is

T #(l
!
)"X #

n
(P). (9)

The quantity P corresponds to the proportion of
correct decisions only in the absence of the signal, i.e.
only in the case of pure noise, and only if the position
of the tested transition is selected at random. Never-
theless, in the presence of a signal, the higher the P

value is, the less likely the super-threshold transition is
false one. By this reason we may consider P as a
threshold transition reliability. The existence of an
optimal P value is obvious : for too small P values one
obtains too many false transitions, and if P approaches
sufficiently close to one, one loses more real transitions
than false ones. We discuss the selection of the P value
later ; here it is assumed to be known. The Student’s
distribution function F(T r n) is defined as (Abramowitz
& Stegun 1965)

F(T r n)¯&
rT r

− rT r

g(t r n) dt, (10)

where g(t r n) is the probability density of the Student’s
t-distribution. To find X

n
(P), one has to solve for X

n

the equation

F(X
n
r n)¯P. (11)
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We introduce now the main format of the final and
intermediate results of the record analysis, corre-
sponding to M& 1 events. The term ‘event ’ means the
data points delimited from either side by a transition.
The properties of the mth event (m¯ 1, 2,… ,M) will
be characterized by its dwell D

m
, mean current A

m
,

and by a local estimate of event variance, V
m

V
m

¯σ#
m
}D

m
. (12)

The local estimates of noise variance, σ#
m
, are obtained

as in equation (7), but the summation is made over all
the points in mth event. The global estimates are
considered in practice as estimates of expected values.
By this reason we shall denote the global estimates of
the noise variance in the same way as its expectation,
σ#. As long as the levels are unknown, we use a
straightforward generalization of equations (5) and
(6)

σ#¯
3
M

m="

(D
m
®1)σ#

m

N®M
; N¯ 3

M

m="

D
m
. (13)

Later on, having estimates for levels, we may improve
the σ# estimate (see the discussion). The quantities D

m
,

A
m

and V
m

are organized into an e�ent matrix with M

rows. Different event matrices will be denoted by letter
Z with an additional letter, reflecting the matrix
specificity. For instance, ZP will be a Programmed
event matrix (i.e. the matrix created by a simulation
program), ZE: Expected event matrix (it differs from
ZP, for instance, due to transition shifts created by
noise ; exact definition is given later), ZO: Optimum
event matrix, etc. In the same format we shall
introduce a le�el matrix ZM (Z Macroscopic) with K

rows, corresponding to the number of current levels
identified (K'M). Due to the analogy with usual
filters, which retain only sufficiently large entities and
neglect small ones, we call the algorithm for finding
super-threshold transitions a Transition filter (or T
filter).

(b) T filter as asymmetric t-testing with dynamic

self-adjusting window

In the first step we find candidates for transitions by
t-testing. This produces a ZT event matrix. In the
second step, the t-testing is improved by increasing
testing windows, when possible. The final product of
the T filter is an event matrix ZC (‘Z Corrected’).
These steps will be illustrated by the test record r with
K¯ 3 (figure 1a, b). For longer records, the analysis
gives more reliable results. A relatively short selected
record allows us to show the performance of the
method for short records and to give complete
illustrations.

(i) Step 1(ZT): Finding transition candidates

According to the construction of the Student’s t-test,
not more than one transition is expected within the
testing window. Since we have no a priori information
about possible transition points, the transition may
occur at any point. Therefore, the testing begins in the
first three data points (i.e. the initial testing window
W¯ 3). If no transition is found, W is increased by 1, i.e.

one more point is added to the set of tested points, and
the test is repeated. In this way the testing window may
increase up to a certain maximum W¯W. The
specification of W'N while finding the candidates for
transitions serves mainly to save time in those cases
when we are not interested in maximum amplitude
resolution. If the transition is not found in the testing
window W¯W, then the window is shifted one point to
the right. At each position of the testing window, all
possible transitions are considered. If at some position
and width of the testing window a transition is found,
then the procedure described is repeated, starting from
the first three points to the right of the found transition.
This continues until the last point of the record is
tested. The outcome of the preliminary T filtering will
be a matrix ZT with M(ZT) events. Figure 1 c shows
the ideal trace for ZT with 273 events obtained at
X¯ 2 and W¯ 20, where X is defined by P via

erf(X}o2)¯P. (14)

The quantity X represents the threshold value of the
Gaussian test, or Gaussian P percentile. This equation
shows that the finding of an optimum P value is
equivalent to the finding of an optimum X value.

(ii) Step 2(ZC): Transition correction}ghost deletion

Now we improve the estimates of positions and
reliabilities of the found candidates for transitions,
using maximum possible number of data points from
two events on both sides of the tested transition.
For instance, if we consider the transition between
events m and m­1, then W¯min (D

m
­D

m+"
,W). If

D
m
­D

m+"
"W, the centre of the window is positioned

as close to the transition tested as possible.
Due to the increased (in average) testing windows,

the T values of real transitions are expected to increase ;
simultaneously, the transition coordinates become
more accurate. For ‘ghosts ’, i.e. false transitions, the
value of T has a good chance of decreasing. Those
transitions for which the T values drop below the
threshold are then deleted. In this way, the assignment
of the transitions is improved both for real and false
transitions. Transition correction}ghost deletion is
finished if no ghosts and no corrections are found.
Sometimes, after all ghosts are deleted, the position(s)
of one (or several) transition(s) undergo cyclic changes.
For W¯N we did not observe such oscillations. To
avoid cycling, the number of consecutive ghost-free
loops is limited to two. After this procedure, the T

values are estimated using all data points in adjacent
events. Therefore, some rT r values may become
smaller than X

n
. Such transitions are also deleted. The

resulting ZC matrix has all super-threshold transitions.
The ZC matrix obtained from our test record at

X¯ 2 and W¯ 20 has M(ZC)¯ 168 events (figure
1d) – fewer than ZT, but still much more than the
programmed 50 events. One way of improving the
results is increasing the X value. Figure 3a shows
M(ZC) in dependence on X in the range 2%X% 4.
By comparison with the original matrix ZP one can see
that the closest to ZP is ZC matrix with 48 events,
found at X¯ 3.3 or 3.4. When dealing with real ion-
channel data, one needs a certain criterion in order to

Phil. Trans. R. Soc. Lond. B (1997)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


42 V. Ph. Pastushenko and H. Schindler Le�el detection �ia ideali�ation

Figure 1. The signal is of HMM type with 3 levels at 0, 1, 2

(a), 50 real events, exponentially distributed dwells with

average dwell 30, equal transition probabilities. Two one-

point events are shown by circles. Addition of the white noise

with s¯ 0.3 gives the simulated record (b). Different

idealized traces obtained at X¯ 2 and W¯ 20: (c) ZT, (d)

ZC, (e) ZS, ( f ) ZM, (g) ZL and(h) ZO¯ZE. Horizontal

dashed lines in (d), (e) and (g) show the boundaries. Numbers

of events and sharpnesses are shown near each trace.

select an optimum event matrix. This criterion will be
described in the next section. Another question is,
whether the best ZC matrix is the absolutely best result
which may be found from this record. Using the same
criterion, we have developed a procedure for obtaining
an optimum event matrix (ZO), which may be found
for given X value (as a rule, the higher X value, the less
events in ZO will be). This has allowed us to recover
the expected matrix ZE. For our test record three
expected transitions are different from original ones.

4. OPTIMAL IDEALIZATION

We consider the optimization of an event matrix as
a method for increasing its statistical consistency. In
section (a) we introduce the optimization principle and
describe the detection of levels from events. In section
(b) we present the global optimization procedures.
Section (c) shows the influence of deviations from
white noise, simulated by additional low-pass filtering.
For our test record, a 100% recovery of expected
events is shown both from raw and additionally filtered
data. In section (d) a choice of the parameters X and
W is discussed.

(a) Detection of levels from event currents

The number of levels, K, and their values are
commonly estimated from pronounced peaks in point
amplitude histograms. Low-pass filtering of the record
is usually used to sharpen the peaks. However, very
deep filtering shifts the positions of the peaks, influ-
encing the estimates of the levels. The idealization
without additional low-pass filtering allows better
estimates of the level currents. One alternative to the
point amplitude histogram is a histogram of event
currents. Such a histogram is irregular for relatively
short data (of the order of a hundred of events). A
regularized histogram (p.d.f.) has been presented
(Colquhoun & Sigworth 1983, formula 26) as a
superposition of p.d.f. of event currents. In this
approach, however, short and long events contribute
equally. This differs essentially from point histograms.
Another alternative is the superposition of the
Gaussian p.d.fs, corresponding to event currents and
weighted with coefficients proportional to dwells. This
is a straightforward generalization of point amplitude
histograms. It has a meaning of probability density to
find a certain signal estimate in a point selected at
random. The sensitivity of this function to the set of
recovered transitions, the latter defining a statistical
model of the signal, is of main interest for us. For this
reason we shall call it a likelihood density function
(l.d.f.), which is a standard term in statistical literature
for probability densities considered as functions of
model parameters. For the very same reason, in this
paper, it would be more logical to use the term
‘likelihood’ with respect to p.d.f. of event currents.
However, we shall retain the term ‘p.d.f. ’ used by
Colquhoun & Sigworth (1983), because both versions
will be compared (cf. figure 7 c) and we need different
names. We have to note, that the term ‘p.d.f. ’ is also
correct, if the record is sufficiently long and if the
transitions are not considered as variable model
parameters.

(i) Likelihood densit� function (l.d.f.)

Let us denote by V
m

a global estimate of the mth
event current variance. Assuming that all the data
points in mth event have the same value of the signal
(i.e. neglecting the possibility of missed events), we
may write

V
m

¯σ#}D
m
. (15)

A possible scattering of A
m

is characterized by a p.d.f.
ψ

m
(A) given by a normal distribution density function

N(α, β)¯ exp(®α#}2β)}(2πβ)"/#

ψ
m
(A)¯N(A®A

m
, V

m
). (16)

Denoting the l.d.f. by ψ(A), we define it as a
superposition of ψ

m
(A), with statistical weights pro-

portional to dwells

ψ(A)¯ 3
M

m="

p
m

ψ
m
(A) ; p

m
¯D

m
}N. (17)

The function ψ(A) is an analogue of the point
amplitude histogram made for an optimally filtered
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record (the optimality is understood in the sense that
the averaging is made only within each event with
maximum possible averaging window, equal to event
dwell). Considered as such an ‘optimal point histo-
gram’, the function ψ(A) displays a remarkably higher
sharpness and separation of peaks in comparison with
usual point amplitude histograms even after low-pass
filtering. It is also sharper in comparison with the p.d.f.
of event currents defined in Colquhoun & Sigworth
(1983) analogously to equation (17), with p

m
¯ 1}M

(for comparison of p.d.f. and l.d.f. see figure 7 c).
Examples of ψ-functions for different event matrices
are shown in figure 3b.

Usually the term ‘likelihood’ is used for a probability
density of a given set of measurements (represented in
our case by the record r), considered as a function of
the model parameters to be estimated (in our case
transition coordinates). We do not use any complete
model which would allow us to write down such a
function. In other words, our model is only partly
defined by assumptions of Gaussian noise and the mere
existence of levels. Therefore, the function ψ(A), being
dependent on transition coordinates, should be con-
sidered as a likelihood function for an incomplete
model. No methods have been suggested previously for
maximization of likelihood functions of this kind. The
next paragraph contains an approach to the solution of
this problem. Some simpler approaches, e.g. maxi-
mizing the sum of peak values, or the sums of ψ-values
calculated at A values corresponding to the levels, gave
much weaker results (at least for relatively short
records).

(ii) Optimalit� criterion: sharpness of l.d.f.

Comparing the amplitude histograms for different
degrees of filtering, one recognizes higher and narrower
(i.e. sharper) peaks as better indicators of levels.
Therefore, the statistical consistency of an event matrix
may be characterized by the sharpness of the cor-
responding ψ(A) function: the closer events are to
levels and the lesser event variances are, the sharper
the ψ(A) function will be. Any ψ(A) function is
normalized to unity

&
¢

−¢

ψ(A) dA¯ 1. (18)

Due to the fixed area below the curve ψ(A), an
increase in sharpness is accompanied by an increase in
the average value of ψ. Therefore, the sharpness of a
ψ function, S, will be defined as its average value
represented by the scalar product of the ψ(A) function
with itself

S¯&
¢

−¢

ψ(A)#dA

¯ 3
M

m="

p
m

3
M

m«="

p
m« N(A

m
®A

m«,Vm
­V

m«). (19)

The quantity S may be considered as a measure for the
likelihood of an event matrix. Therefore, our approach
is to maximize S.

The scalar product of p.d.f.s for two arbitrarily

chosen events is proportional to exp(®G#}2), as is clear
from equations (4) and (19). For this reason it decreases
rapidly with increasing G value. Therefore, if due to
deletion of false transitions, the event currents are more
compactly distributed around corresponding levels,
the sharpness will increase. The same property shows
that the cross products, i.e. the products of the events,
belonging to different levels, practically do not con-
tribute to the sharpness (for more details see the dis-
cussion).

The values of S for ZC matrices at different X are
shown in figure 3a. The sharpest ZC matrix is found
at X¯ 3.3 or 3.4. It is the same matrix as found by
direct comparison with the original matrix ZP and has
48 events. All the transitions in the sharpest ZC
coincide with expected ones, although the expected
matrix has 50 events.

(iii) Step 3 (ZM): Detecting le�els as a secondar� quanti�ation

Level detection may be considered as a sequence of
quantization steps. By quantization we mean a
procedure of finding a smaller set of numbers,
representing system properties. A trivial quantization
is represented by the digitization of the analogue data,
replacing a continuum by N data points. The
idealization of the record may be considered as a
primary quantization, replacing N data points by a
much smaller set of numbers contained in a cor-
responding event matrix with M'N rows. In full
analogy, the detection of levels from the events found
corresponds to a secondary quantization, resulting in a
level matrix with K rows, K'M (for our test record
K¯ 3). Such a secondary quantization may be done in
a matrix form, producing the level matrix immediately
from the event matrix. Two further alternatives are
presented.

To obtain the level matrix ZM immediately from
the event matrix ZC, the lines in ZC are first sorted in
the ascending order of event currents. This gives a
sorted event matrix, ZS (the ideal trace for ZS is shown
in figure 1 e). The third column in ZS contains the local
estimates of the event variances. This allows t-testing in
ZS matrix, which corresponds to classical use of the
Student’s t-test, because the positions of the transitions
tested are already predefined. This testing does not
change the transition coordinate, but deletes sub-
threshold transitions. Due to the sorting, the differences
of event currents in consecutive rows of ZS (and
therefore the T values) are significantly decreased in
comparison with those in ZC. In order to obtain a
guess for the level matrix ZM, we delete all sub-
threshold transitions in ZS at some X value, which is
accepted independently of initial X value, used with T
filter. The number of rows in the remaining matrix,
recognized as a guess for ZM for a given X value, is
considered as a guess for K. A certain specific feature of
the dependence K(X) allows one to find the real level
matrix.

Figure 2 shows the dependencies K(X) for different
ZS matrices, each of them being obtained at W¯ 20
and different initial X values (o, X¯ 2; ­, X¯ 2.5;
¬, X¯ 3). Further increase of the initial X value up
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Figure 2. Guesses for K, corresponding to different ZS

matrices. Starting ZS matrices are obtained at initial X

values : (o, 2,­, 2.5 ; ¬3). The big jump of X value at

transition from K¯ 4 to K¯ 3 is typical for appearance of

real levels.

to four gives results close to those for X¯ 3. The big
jump in X value (figure 2) between K¯ 4 and K¯ 3
indicates that the real value of K is three. The ideal
trace corresponding to ZM constructed in this way is
shown in figure 1 f. The wide gap in X values,
separating the real level matrix from different guesses,
is the consequence of the macroscopic nature of ZM
matrices, in which rows are constructed from many
events of ZS matrix. This is quantitatively reflected
by the asymptotic (i.e. for sufficiently high N)
proportionality of the gap width to N"/#.

We have described the procedure of detecting levels
from the sorted event matrix ZS. Two further
alternatives are based on a ‘record’ r

s
, defined as a

record, correspondent to the event matrix ZS. It is
obtained from the record r in the same way as the
matrix ZS was obtained from ZC. The first point(s) of
r
s
is (are) the data point(s) belonging to the first event

in ZS and taken in the same sequence. The data
point(s) belonging to the second event in ZS is (are)
taken as next point(s) of r

s
, etc.

The first and the simplest alternative is standard
one, e.g. the levels are detected as pronounced peaks in
the point amplitude histogram of the low-pass filtered
record r

s
, which may be low-pass filtered much deeper

than r due to essentially decreased number of real
transitions in r

s
(K'M).

The second, slower but somewhat more accurate
alternative uses statistical filtering instead of the low-
pass filtering. The level matrix ZM is obtained from r

s

as an event matrix produced by T filter at W¯N and
sufficiently high X, taken as any value from the wide
gap shown in figure 2. The justification of using T filter
for this version of the secondary quantization is the fact
that the noise values in the record r

s
are uncorrelated.

An insignificant amount of adjacent one-point events
in ZS may be omitted while constructing r

s
. This may

be done if one-point events do not form their own level,
which is almost always the case.

As we have seen from figure 2, the level matrices can
be obtained from ZC matrices, produced by the T filter
in a wide range of initial X values (from two to four).
One can expect an absolutely best result for ZM in the
case when the starting matrix is as close to the original
matrix ZP as possible. The question is, whether there is
a better starting matrix than the sharpest ZC matrix.
If the levels are well expressed, as in our example, the
practical necessity of looking for a better starting
matrix is negligible. For instance, the levels produced
from the sharpest ZC matrix are very close to those
produced from the programmed event matrix. More-
over, the estimates of the levels for our test record,
obtained from ZC corresponding to X¯ 2 and X¯ 4,
differ only by about 0.03. For worse data, looking for
a better starting matrix may be more significant. The
subsequent steps are described to find an optimum
event matrix, called ZO.

(b) Optimization of event matrices at constant

threshold

The Student’s t-test works without preliminary
knowledge of levels. As a consequence, sometimes
adjacent events most likely belong to the same level
(the closest one to both event currents). This is an
unavoidable price for increase of amplitude resolution
with growing testing window. As we have seen, the
deletion of all such false transitions by increasing X

value may cost several extra real transitions. The
knowledge of the levels changes the problem prin-
cipally : it allows us to get rid of this kind of false
transitions by switching to a different test with built-in
information about levels (such as Hinkley test, Schultze
& Draber 1993, see also discussion). However, even if
we would switch, we would still have to find the
optimum threshold value for the new test (cf. Pastu-
shenko et al. 1997). Moreover, such a switching
assumes that the levels are already known, whereas we
are still trying to improve the level estimates. By these
reasons, we describe here a simpler alternative, based
on explicit deletion of the false transitions. This allows
us to demonstrate the performance of the new
optimality criterion, which may be used also with
different statistical tests, such as Gaussian or Hinkley
tests.

(i) Step 4 (ZL): Transition correction}ghost deletion using le�els

Let us denote the levels (the second column in ZM)
by A

k
, k¯ 1,2,…K. The boundaries between levels,

B
k
, are defined as midpoints between neighbouring A

k

values

B
k
¯ (A

k
­A

k+"
)}2, k¯ 1,2,…, K®1. (20)

If two adjacent event currents are not separated by any
boundary, then the events are most likely belonging to
the same level. The corresponding transition is then
deleted. Such a process of merging dwells produces a
linked matrix ZL. Merging dwells gives a better

Phil. Trans. R. Soc. Lond. B (1997)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


45Le�el detection �ia ideali�ation V. Ph. Pastushenko and H. Schindler

Figure 3. Stages of T filtering}optimization, performed at

different values of X at W¯ 20. (a) Sharpness is shown as 100

S (circles), numbers of events in different matrices are shown

by points. (b) different l.d.f.s at X¯ 2, W¯ 20. Note the

growth of the sharpness in sequence ZT!ZC!ZL!ZO.

estimate for the ideal trace and increases the sharpness
(cf. figure 1d, g) but does not affect the level estimates.
The sharpnesses (circles) and the numbers of events
(points) in ZL matrices are shown in figure 3a in
relation to the X value. The sharpest ZL matrix has 48
events. ZL matrix with 50 events is also different from
ZE. B� definition, the expected matrix ZE is obtained
from the original matrix ZP by correcting the
transitions and subsequent merging dwells. The tran-
sition correction is made by step 2 of the T filter at
X¯ 0 and W¯N. Due to noise, in our test record two
transitions are shifted by one point and one transition
is shifted by two points ; merging dwells after correcting
ZP does not change the number of events.

The ψ-functions for ZT, ZC and ZL produced at
X¯ 2 and W¯ 20, are shown in figure 3b. Almost the
same curves would be obtained for higher values of W.
As expected, the peaks become higher and sharper in
the sequence ZTUZCUZL. What could be the next
step to improve further the estimates for transitions?
We have constructed the following procedure to obtain
an optimum matrix ZO from ZL, using the sharpness
as a guiding line.

(ii) Step 5 (ZO): maximi�ation of sharpness at constant

threshold

Suppose that a matrix ZL was obtained at some X

value. In this subsection, we describe the procedure of
obtaining ZO from ZL at fixed X value. The first guess
for matrix ZO is given by ZO¯ZL. The transitions in
this ZO are numbered in the ascending order of T # (it
would be more logical to make this sorting in the
ascending order of G #, but this gives very small
improvement at the cost of increased time). We make
then an attempt to increase the sharpness of ZO by
deleting the first transition (in spite of the fact that it is
super-threshold one) and applying to the remaining
transitions the second step of the T filter at the initial
X value, with subsequent merging dwells. If the
attempt is successful, i.e. if the new matrix is sharper,

it is accepted as the next guess for ZO. Then the whole
procedure repeats. If the new matrix has smaller
sharpness, it is not accepted as the next guess for ZO.
In this case the next attempt starts from the next
transition. In this way the attempts may be continued
until all the transitions have been verified. The result is
recognized as the optimum matrix, ZO.

Figure 1h shows an ideal trace corresponding to a
certain ZO for our test record. The same matrix ZO is
obtained at higher values of W (30 and 40). The
matrices ZO coincide exactly with the expected matrix
ZE for X! 2.2. The sharpnesses and the numbers of
events in ZO matrices for different X values are shown
in figure 3a. An example of l.d.f. for ZO is shown in
figure 3b. For our test record, all the matrices ZO
contain only expected transitions (for different test
records of the same type, this was true in most cases).

(c) Effects of correlated noise/additional filtering

According to its derivation, the Student’s t-test (like
Gaussian test) may be applied to records with
uncorrelated Gaussian noise. However, due to pro-
portionality between cut-off frequency f

c
and sampling

frequency, the noise is usually correlated. The main
effect of the correlated noise is expressed in an increase
of the T values due to underestimated noise variances.
For dwells longer than several correlation times the
variances will be underestimated by approximately the
same factor. Thus, the correlated noise causes mainly a
shift of the relevant T or X values. If the sampling rate
is not much higher than the standard one, this shift has
little influence on the optimal recovery of transitions.

To illustrate this with the same test record, we have
filtered it by an unbiased digital exponential finite
impulse response (FIR) filter with an efficiency of o2,
which corresponds approximately to averaging over
two points, figure 4a. By ‘efficiency’ we mean the
factor by which the r.m.s. of white noise (in the absence
of signal) decreases after filtering. It can be shown
analytically that the exponential filter is the best of all
other filter types (compared at the same efficiency) in
the sense of minimum distortion of the signal at a single
transition (i.e. between two long real events). The
exponential filtering with efficiency of o2 produces
almost the same correlation in noise as found with
white noise after filtering with analogue RC filter and
sampling with the standard interval t

s
¯ 1}(2πf

c
).

The results of all five steps of the analysis are shown
in figures 4 and 5. One difference with the previous
results for non-filtered data (figure 1) is that ZL is
now much closer to ZO and even coincides with ZO at
X" 2.1.

Another difference to the previous results is that the
sharpest ZO matrix has now 52 events. Two additional
events, each consisting of one point, are shown by
circles in figure 4 f. Working only with additionally
filtered data, we would have to recognize 52 events as
the best result. However, we can recalculate the event
currents and variances in ZO matrix, using the dwells
from ZO, but the data points from the non-filtered
record r. After such recalculation, the matrix with 52
events will not be the sharpest one any more. Moreover,
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the matrices ZL and ZO with 50 events, obtained in
the range 2.2%X% 2.6 after recalculation of event
currents and variances, are less sharp than ZE for non-
filtered data. This is due to the shifts of two transitions
by the low-pass filtering. The effect of transition shifts
can be removed by correcting transitions, using the
non-filtered record r (the transition correction is made
by the step 2 of the T filter at X¯ 0, with subsequent
merging dwells). After this operation ZL and ZO
matrices with 50 events coincide with ZE for non-
filtered data. This illustrates the decrease of the time
resolution by the low-pass filtering due to shifts of
transitions (Colquhoun & Sigworth 1983). It indicates
simultaneously the possible way of correction, which
represents an alternative to the time-course fitting. For
practical recordings, this suggests that higher cut-off
frequencies for the recording devices are preferential in
spite of the increased noise amplitude, unless the noise
power spectrum is steeply growing at f

c
.

The shift of the highest X value, at which the
expected matrix can still be recovered, from 2.1 to 2.6,
is caused by the filtering, and, due to the fact that the
filtering was not very deep, is of no importance.

Figure 5 shows the sharpnesses and the ψ(A)
functions for different event matrices obtained from the
filtered record at X¯ 2 and W¯ 20. The l.d.f. of ZE
for filtered data is not shown: it optically coincides
with l.d.f. of ZO. The sharpnesses of ZC and ZT now
differ considerably less than in figure 3. Thus, the low-
pass filtering has already used up a good part of
reserves for increasing the statistical consistency.
Therefore, additional low-pass filtering and T filtering
are competing for essentially the same reserves.
However, the low-pass filtering is equivalent to some
averaging of the data points, ignoring the transitions,
whereas T filter avoids the averaging across transitions.
This is the main reason for better resolution of statistical
filters, represented in given case by T filter.

The matrices ZL and ZE for filtered data coincide in
the range of X values from 2.2 to 2.6, whereas for non-
filtered data none of ZL matrices coincided with ZE.
This does not mean that the low-pass filtering has
rendered the idealization an easy problem. For
instance, simply attributing the data points to the
closest level, we would still obtain 91 events – much
more than programmed 50 events (and before the
filtering we would get in this way 224 events). If we
low-pass filter the data so that SNR¯∆}σ increases
up to six (the 50% method recommends to increase
this ratio up to 10), we still find 63 events by the 50%
method. At the same time, several real transitions are
already lost (over-filtered). This situation is typical for
records where transitions between remote levels are
possible (i.e. if transitions are allowed not only between
adjacent levels). For records with only two levels this
difficulty does not exist.

(d) Choice of the initial parameters X and W

For maximum amplitude resolution, the maximum
window is unlimited, W¯N. Then the problem is
reduced to selection of X, based on the search for the
sharpest event matrix. The price for maximum

Figure 4. Some stages of the analysis of the test-record r

filtered with efficiency 1.41: (a) filtered record; (b) to ( f )

different traces (matrix name, number of events and

sharpness are shown near each trace).

Figure 5. As figure 3, except record r was filtered with

efficiency 1.41.

amplitude resolution can be some extra transitions
(deleted later by merging dwells), and somewhat
higher calculation time. This technical detail is the
main reason to accept W'N.

A logically possible strategy for selecting X and W

parameters as those which lead to sharpest ZO matrices
is time consuming. A much simpler and faster practical
version is based on relative robustness of levels, which
are almost equally well estimated from the sharpest of
ZL matrices. By this reason the term ‘optimum X

value’ will be understood in the sense of the sharpest
ZL matrices. The fluctuations of optimum X values
from record to record decrease with increasing N. To
illustrate the selection of optimum X and W values, a
longer record was generated. The t-testing was carried
out in the range of X values from 1.9 to 3.9. Maximum
testing windows assumed one of the values W¯ 10, 16,
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22, 28, 34, 40, 46, 52, 70, 100, 200. For matrices ZC
and ZL, calculated for W" 10, numbers of events and
sharpnesses are shown in figures 6d, e. The maximum
sharpness of ZL at fixed W is shown in figure 6 f in
relation to ln(W). The sharpest ZL is found at X¯ 3.3
and W¯ 28, which are optimum for this case.

For practical purposes, one may further simplify the
choice of X and W, using the fact that the results are
mostly sensitive to X values and much less to W values,
if the latter are sufficiently high. This allows some
standard choice of W to be made for a given X,
screening subsequently only different X values, i.e. in
one dimension. A practically acceptable rule is W¯
20λ, where λ is the dead time, defined as the shortest
detectable dwell time for transitions between two
closest levels. The distance between the closest levels is
denoted by ∆. Strictly speaking, due to fluctuations the
shortest time for transitions to the first or to the last
levels is always equal to one. Thus by λ we mean the
average dwell of such events, which in the neigh-
bourhood of very long events produce the threshold
value of the test. We shall estimate λ for noisy records,
in which case λ( 1. Then the T value can be replaced
by the G value, and X

n
by X. Assuming that one of the

two tested dwells is equal to λ'W, one may write

TEG¯oλ(1®λ}W)∆}σEλ"/#∆}σ&X,

and λ¯ (σX}∆)#. (21)

For our test record (optimum value of X¯ 3.3 and
σ}∆¯ 0.3) this gives λE 1. In other words, one point
events are partly resolvable at X¯ 3.3, if they have
sufficiently long neighbours.

5. DISCUSSION

Several scientific and practical aspects of the new
method should be discussed and compared with
existing methods. One of the first aspects is the quality
of the idealizer. The T filter could be compared with F
testing by Kirlin & Moghaddamjoo (1986) or with
published recently method of maximum slopes (Van-
Dongen 1996). The asymmetric testing in T filter in
combination with the dynamic self-adjusting testing
window provides for its applicability to a wider class of
data, or for a higher resolution, if applied to the same
data.

Presently, the standard method of level detection
based on analysis of the point amplitude histograms of
additionally low-pass filtered data with low SNR
works satisfactorily only in the case of sufficiently long
average dwells. An attempt to increase the resolution
using p.d.f. or l.d.f. in combination with idealization
methods based on preliminary knowledge of levels
(such as 50% and Hinkley methods), is not always
helpful. This is illustrated in figure 7, where our results
are compared with those obtained by the 50%
amplitude method applied under the assumption of
two existing levels, which are easily revealed from the
point amplitude histograms.

There are no indications of three levels in the point
amplitude histograms even for deep filtering (up to
efficiency 6, actually remarkably over-filtered). An
attempt to see the third level with the help of p.d.f. of

the event matrix produced by 50% amplitude method,
fails (cf. figure 7b), in spite of the fact that we used the
optimal low-pass filter (exponential). Efficiency 1
corresponds to non-filtered data. With efficiency 1.41
one should reach approximately ∆}σ¯ 4.5, which is
somewhat less than the value of 5–6 recommended for
this method (Sigworth 1983). For efficiency 3 the SNR
value is 9.5, well above the recommended ratio. No
indication of three levels is seen from any of the three
curves. Practically the same results would be found
with Hinkley method, which is a somewhat better
idealizer than the 50% method, if the data require
additional low-pass filtering.

The level detection by our method is much better.
Figure 7 c shows the p.d.f. and l.d.f. for ZL matrix. The
l.d.f. for levels, denoted by l.d.f.

m
(three narrow sharp

peaks), is reduced 40 times for better scaling.
This example should not be understood in the sense

that the idealization by 50% amplitude or by Hinkley
method is alWa�s worse than the idealization by T filter.
For instance, if we compare 50%, Hinkley, Gauss and
T filters as idealizers for records with tWo knoWn levels
and knoWn noise variance, then the best ideal traces will
be ordered as Hinkley" 50%"Gauss"T filter (for
comparison of Student and Gauss see Pastushenko et al.
(1996)). This sequence is quite natural, because the
first two methods use more additional information, and
therefore they solve an easier problem than the last
two. Correspondingly, the Gaussian test is better than
Student, because ‘ it knows more than Student’. The
operation of merging dwells in combination with
Gaussian or Student testing decreases their difference
with other methods, and may even change the
hierarchy for multilevel records with sufficiently low
SNR. The example in figure 7 shows that using
information about levels, frequently considered as the
advantage of the first two methods, may become their
disadvantage, if the level detection is not a trivial
problem. The other way around, the ‘disadvantage’ of
the Student’s t-test may become its advantage if levels
and noise variances are unknown. In fact one should
not speak about disadvantage of Student or Gaussian
tests – these tests are appropriate in corresponding
conditions, which may lead to their superiority, as
demonstrated in figure 7. We speak about both these
tests because all the procedures described in this paper
(with exception of estimating the noise variance) are
applicable after replacing the Student’s t-test by the
Gaussian test, which gives the Gaussian equivalent of
the T filter. The switch to Gaussian filter may be even
recommended after finding the noise variance, which is
very well estimated at the optimum X value. One can
ask, whether the Gaussian filter does not occupy the
whole niche of the T filter. If the noise amplitude σ is
known in advance, and if σ is surely the same for
different levels, then the Gaussian filter has a prefer-
ence. As we have indicated, this is possible not in all
experiments. Both Student’s t-test and Gaussian test
are derived in assumption of the same σ for different
levels. Nevertheless, the Student’s t-test may appear
preferential in comparison with Gaussian test for
multilevel records, if σ significantly varies from level to
level.
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(a) (d)

(b) (e)

(c) ( f )

Figure 6. Illustration for choice of the parameters X and W. The test record contains 300 real events, expected average

dwell 30, σ}∆¯ 0.3. Point amplitude histograms: (a) for white-noise data; (b) for additionally filtered data with

efficiency 1.41. (c) different l.d.f.s : ψ(ZP) and ψ(ZL) for the sharpest ZL practically coincide. ψ(ZM) is very sharp

and high (its main part is out of the picture) ; the width of ψ(ZM) reflects uncertainty in detected levels. (d) M(ZC)

and M(ZL) versus X for W" 10. Note that the two bundles of curves fuse in the region of optimum X. (e) Sharpnesses

of ZC and ZL versus X. ( f ) Maximal at given W sharpness versus ln(W). The sharpest ZL is found at W¯ 28,

X¯ 3.3.

(a)

(b) (c)

Figure 7. Comparison of different methods of level detection. The record with 300 real events was simulated, with

three levels at 0, 1.1 and 0.9, shown as closed state C and open states O
"
and O

#
respectively. (a) First 3000 simulated

data points and kinetic scheme for channel activity. Levels are shown by horizontal lines. (b) p.d.f.s for matrices

obtained by 50% method from differently filtered data (filtering efficiency is shown near the curves).(c) Results of

T filter : p.d.f. and l.d.f. for the same ZL matrix obtained at X¯ 2.5 and W¯ 50. Note that the l.d.f. is sharper than

p.d.f. The l.d.f. for levels (l.d.f.
m
) is plotted with scaling factor 1}40.
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(a)

(b)

(c)

(d)

There are several technical points that should be
mentioned. One of them is related to the global
estimation of the noise variance. As long as the levels
are unknown, or the drift is significant, the definition
(equation (13)) gives the only possibility. However, as
soon as the level estimates in a stable record are known,
one can improve the estimate for σ#, using the level
matrix obtained as event matrix for the sorted record,
r
s
. The difference between the two σ# estimates grows

with decreasing X.
In full analogy with the estimate of the noise

variance, one can somewhat improve the definition of
the sharpness using the knowledge of the levels. As one
may see from equation (19), a certain contribution to
the sharpness is made by cross products due to events
belonging to different levels. Such events belong to
different classes and it is more logical to omit the
corresponding cross products. As long as we did not
know the levels, we could only rely on small con-
tribution of the cross products into the sharpness.
There are several reasons for this. (i) The cross products
quickly decrease with increasing difference of event
currents. (ii) Short events belonging to different levels
may occasionally appear close to each other. However,
their contribution to the total sharpness is small. This
is partly due to their small statistical weights, partly
due to their high variances (level variance is inversely
proportional to dwell), and partly due to their
deviations from levels. (iii) Relatively long events,
which give the main contribution to the sharpness,
make extremely small cross products due to small
values of event variances. With growing noise variance,
or with decreasing X values, when the average dwell
decreases, the omitting of cross products becomes more
important, because in both cases the event variances
grow. Formally omitting cross products corresponds to
the view on ψ-function as a vector with K components.
Within this concept, the cross products are auto-
matically not included into the sharpness, defined in
the same way, i.e. as the squared norm of the (vector)
ψ-function (Pastushenko & Schindler 1995).

The third point is the question, whether the results
are the same when the data are analysed in reversed
sequence. All the three points are addressed in figure 8
for the non-filtered (a, b) and filtered (c, d) test record.
The calculations were made at W¯ 20 with improved
estimates of the noise variance. Correspondingly, cross
products in the sharpness were omitted. The sharp-
nesses (a, c) and numbers of events (b, d) are presented
for matrices ZC, ZL and ZO in a wider range of X

values (beginning from X¯ 1.3 in steps of 0.1). We did
not try even smaller values of X because already at
X¯ 1.3 we have ZC with 560 events for non-filtered
data and with almost 600 events for filtered data.

For X values from 2 to 4, the results for forward
analysis (circles) practically coincide with those pre-

Figure 8. Results of the analysis in forward (D) and

backward (­) directions. The same record as in figures 1 to

5. (a, b) Non-filtered: the difference between both directions

exists only for ZC and ZL matrices, and for not very high X

values. (c, d) Filtered: ZO matrices in backward direction

have one event more than in forward direction only for

X! 1.9.
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sented earlier. In this region the dwells and the event
currents are exactly the same for all matrices. The
sharpnesses are changed only in fourth digit. This
justifies the use of the definition (19).

For non-filtered data, ZO matrices calculated in
both directions are the same in the whole range 1.3%
X% 4. The difference between forward and backward
directions exists only for ZC and ZL matrices, as long
as X value is not very high. The sharpest ZC and ZL
matrices for both directions are the same. For smaller
X values, both ZC and ZL matrices represent
intermediate results, therefore the difference between
both directions is not important. It is possible to
construct the time symmetric version of the T filter.
However, due to the fact that the time symmetry is not
the main problem, we have selected for presentation
the simplest, solid and logically consistent version,
aiming to achieve the highest possible resolution. One
of the advantages of this version is that ZT matrices,
which may be produced practically simultaneously
with the recording, are relatively close to ZC matrices
at sufficiently high X values. This enables a preliminary
level detection without even saving the record. There-
fore, the first step of the T filter in combination with
matrix level detection may be realized in a form of a
hardware with relatively short memory.

It is interesting that for non-filtered data the range
of X values where ZO coincides with ZE is now
increased (1.3–2.1). For filtered data, analogous
interval remains the same (2.2–2.6). For X! 2.2 we
find ZO matrices for filtered data with 51, 52 and even
with 53 events (the latter in the reversed direction at
X¯ 1.3). Taking into account that these 53 events are
found from initially 600 events, it should be recognized
as a good result.

The main scientific novelty of this paper is the new
optimality principle, maximum of an incomplete
likelihood. As we have demonstrated, for data of
moderate quality it works very well even in its simplest
form. At the same time, one can ask for a statistically
reliable assessment of the performance of the method
for a wider class of data. Recently, we have developed
special procedures for such assessment via direct
comparison with ZP (Pastushenko et al. 1997). These
procedures are especially efficient for comparison of the
qualities of idealization by different methods. Ad-
ditionally, they allow one to find an objectively
optimum test threshold value (in our case X value).
Using these procedures, we have made a rigorous test
for S criterion, having combined it with Hinkley test.
The only problem for very difficult data was to take
into account the probability of missed events while
estimating event variances, equation (15). We were
able to show that S criterion excellently recovers the
objectively optimum X values, even for data with very
high noise and relatively short events, including non-
HMM-type data (preliminary report : Pastushenko &
Schindler 1995). Together with previous demon-
strations, these findings strongly suggest the high
predictive power of S criterion.

Our method may be used as a prefilter or a control
in combination with other methods of analysis,
including HMM methods. The estimates for levels and

noise variances, used as the starting values, save
considerable computation time. On the other hand, for
data of reasonable quality, the optimum event matrix
may be immediately used for the recovery of the
channel mechanism.

Another advantage of our method is its possible use
for detrending data. The local character of the t-test
allows finding transitions from a limited number of
adjacent points where the role of the drift is negligible.
The analysis of the event currents allows to detect the
drift and to eliminate it from the record for subsequent
optimal analysis.

A version of the method may also be applied to
unstable records without drift elimination. We did this
for simulated channel data and for jump wise growing
capacitive current. In this case one should optimize
the l.d.f. for jump amplitudes instead of the l.d.f. for
event currents. The jump amplitudes are given by
the differences of adjacent event currents, and their
expected variances are estimated exactly as in deri-
vations of the statistical tests.

These additional possibilities illustrate the attrac-
tivity of the new method as a tool for analysis of ion-
channel records or similar data.
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